
Performance Analysis and Assessment—A
Developer Workbook

Tobias Weinzierl and Thomas Flynn

June 4, 2025

2

Preface

April 2025
We organised a series of performance analysis workshops in spring 2025, funded
through the Digital Research Infrastructure (DRI) programme under the umbrella of
our HAI-End project. These workshops differed from previous installments in that we
did not focus on particular tools. Instead, we conducted brainstorming and discussion
exercises centered around a fundamental question: How do you begin performance
assessment when you know little to nothing about your code?

While some tools such as Intel’s Application Performance Snapshots (APS) or
Linaro’s MAP provide high-level overviews, we approached this challenge not from a
tools perspective but from an observational point of view. We asked: What are the
essential properties we must understand before diving deeper into code analysis?

This inquiry led to a high-level, top-down approach, documented through mindmaps,
flowcharts, and case studies. The raising approach is fundamentally different from the
existing POP methodology, which collects fine-grained metrics and successively ag-
gregates them into high-level metrics and flaws. It also differs from approaches offered
by and supported through tools like Scalasca, which require a certain level of code
maturity and system knowledge from the user.

Both direction of travel are important and very valuable, and we think they might
be more sophisticated and insightful compared to what we came up with. However,
our technique is very simple and does require next to no specialised software and
tools knowledge. We developed a straightforward, accessible starting point to initiating
performance analysis. This first version of the document summarises these foundational
ideas.

Some of the sections are not yet written, and a lot more are yet to come. However,
we decided to share them early, to be able to gather feedback and polish the ideas. This
is only the first version of a living document.

Thomas Flynn, Tobias Weinzierl
Durham, June 4, 2025

3

4

Contents

I Introduction 7

1 How to read 9

2 Terminology 13
2.1 What we do . 13
2.2 Fundamental HPC and assessment terms 15
2.3 Bottom-up vs. top-down assessment 18

3 Preparation 19
3.1 Set up the benchmarks . 19
3.2 Working environment . 21
3.3 Compiler setup . 21
3.4 Understand the code’s complexity 23
3.5 I/O . 23
3.6 Machine details . 24
3.7 Labelling of code parts . 25
3.8 Existing optimisations . 26

II Performance Assessment 29

4 High-level first glance 31
4.1 The assessment rubrics . 32
4.2 Core performance . 33
4.3 Intra-node (node-level) performance 36
4.4 Inter-node performance . 40
4.5 GPU performance . 41
4.6 I/O performance . 41
4.7 Localisation . 41

5 Summary and outlook 43
5.1 Recap . 43
5.2 Outlook . 44

5

6 CONTENTS

III Appendix 47

A Acknowledgements 49
A.1 Funding councils and supporting initiatives 49
A.2 Partners . 49

Part I

Introduction

7

Chapter 1

How to read

As with any workbook — i.e. a book that’s there to guide actual work not to teach a
big subject — there are numerous ways to read the text. You can read the manuscript
chapter by chapter, but this is unlikely to be the most fun experience. Below, we collect
some ideas on how to substructure the reading:

Context
This document is part of an ongoing body work of designing and implementing a struc-
tured performance analysis methodology with the future aim of building a performance
assessment service.

The work presented here is a precursor to a far more detailed text which will
include a structured methodology for conducting performance assessments. In this
iteration we introduce: relevant terminology for High-Performance Computing (HPC)
and performance analysis; preparing for an assessment; and finally how to begin an
assessment from a high-level.

Current state of manuscript
Both Chapter 2 and 3 are predominantly complete though with notable exceptions such
as Section 3.4 which are yet to be completed, and are labelled as ‘t.b.d’.

Within Chapter 4, the first three sections are largely finished and have been written
in conjunction with implementing these methodologies during recent performance
analysis workshops. Section 4.4 has been started but the ending of this section still
needs significant work. We want to implement more of this ‘inter-node’ assessment
before making recommendations that are unfounded. Sections 4.5 and 4.6 are yet to be
worked through, though Section 4.7 is mostly complete.

Clearly sections labelled as ‘complete’ may also need to be extended as further work
is done, as the content may become insufficient. Note however that some forward refer-
ences may link to topics to come in future versions of this manuscript, e.g. discussions
of tools, performance assessment service, etc.

9

10 CHAPTER 1. HOW TO READ

Finally, Chapter 5 will not be part of the final document (as with this section and
the previous) but recaps the current progress of this document whilst also discussing
the content to come in the next iteration of this document.

First-time assessment
We recommend to run through the preparatory remarks in Chapter 3 first and to complete
all the checkboxes (dos) there. Once completed, it is time to run through the high-level
assessment remarks in Chapter 4. With most codes, it is highly unlikely that a code will
only show one kind of flaw in the high-level analysis.

We propose to run through the detailed analysis step by step afterwards. Per step, it
makes sense to consult the tools summary (Chapter ??) and notably to try out different
things. Where appropriate, the reader might prefer to read through one of the case
studies in Part ??, just to get some inspiration on what tools and approaches to try out
and how to report outcomes.

Assessment
If you have already completed numerous assessments, then the manuscript is mainly
a reference document. You’d start with the high-level assessment in Chapter 4, before
you dig into the various subchapters depending on the initial assessment outcome. The
case studies are not of particular relevance (anymore), as you have already completed
you own case studies.

Feedback
The quintessential objective of any assessment is to give feedback to developers. Once
they make changes to their source code, it is important to re-start the assessment from
scratch. There is always this temptation to return to the particular characteristics of
interest that have led to a report, to see how the code changes by the development team
have altered these characteristics, and then to continue from there.

It is important to reassess the “flaw” metrics. However, this should only be a
validation that something has changed. After that, we have to start from scratch, as
performance optimisation is a complicated process where one change might introduce
flaws, improvement or character changes in a completely different part of the code or
affect a completely different flavour of the performance. If we alter a particular code
part that makes the scaling deteriorate for example, this might have a severe knock on
effect on the core performance. If we improve the core performance, the GPU offloading
might all of a sudden run into data transfer issues. There are numerous examples for
these side-effects.

How it works

11

⊞ Conduct a performance assessment which both covers all aspects of the code
(cmp. Chapter 4) plus goes in-depth all the way through for all flaws identified.

⊞ Hand this completed assessment back to the developers to address the flaws.
⊞ Restart the assessment from scratch top-down, i.e. starting with the high-level

assessment covering all code runtime nuances.

How it does not work

⊟ Mix code optimisation and performance assessment workflows.
⊟ Restart the assessment from the place where you stopped when you reported

a flaw and continue digging through the assessment decision metrics without
redoing a high-level, overarching assessment.

12 CHAPTER 1. HOW TO READ

Chapter 2

Terminology

Performance and efficiency, i.e. the speed of a code, are critical non-functional properties
of scientific codes. Measuring, assessing and interpreting them is challenging; without
even considering tuning. Most annoyingly, there is no standardised way how to analyse
and assess performance. There is no vanilla workflow. Every team, every project, every
scientist create their own analysis workflow or process, and this processes often changes
from paper to paper or experiment to experiment.

Despite the vagueness in the metrics and the processes, there are some well-defined,
common terms in the community that we should use. There are also some key concepts
and some jargon that we use throughout the write-up. So we better introduce them first.

2.1 What we do
From hereon, we rely on a few key assumptions:

1. We assume that the person studying the code has limited knowledge of the code’s
internals, the application domain, and the algorithms used.

2. We evaluate how a code performs and whether certain characteristics deserve
closer examination.

3. We are interested in the code’s behavior on one particular machine for one
particular experimental setup or a closely defined set of experiments.

4. Whenever we explain why a code performs as it does, this explanation comes
from a machine’s point of view: It does not argue about the algorithm or science
case.

Reader’s guide

Feel free to skip the remainder of this chapter if you are a first-time reader.

13

14 CHAPTER 2. TERMINOLOGY

In scientific computing, we typically work with an iterative approach: First, we mea-
sure or benchmark how a code performs. Second, we use these data to inform our
performance assessment, i.e. our reporting. Third, we conduct a performance analysis
to explain why the code exhibits the observed behaviour. Finally, this analysis feeds
into program tuning or optimisation, and we repeat the workflow.

If we take our list of activities and integrate it within the definition of the perfor-
mance analysis workflow, it becomes clear that the tuning step is out-of-scope here.
Another related technique is out-of-scope, too: The most advanced papers in scientific
computing, particularly within high-performance computing, deliver a performance
model; essentially a pen-and-paper assessment of what a code should be able to deliver.
This is impossible if we adhere to the principles above: having limited knowledge and
only explaining observed behavior rather than relating it to external factors (such as
input data or algorithmic choices) or algorithmic context. We commit to a data-driven
approach. Obviously, such an approach might complement an analytic, theoretical
assessment of code, but we recommend considering this as an entirely separate cup of
tea.

We will inevitably face difficulties if we truly do not know the code we are evaluating:
Explaining certain effects is so much easier with some (rudimentary) understanding of
the code. However, there are three compelling reasons to treat code as a (logical) black
box: First, performance assessment is often delegated to non-developers: colleagues
from computing centers, centralised HPC specialists, or external service providers. If
we want to discuss performance analysis methodology, it is counterproductive to assume
in-depth code knowledge. Many people conducting assessments cannot be experts in
every code they examine. Second, requiring code expertise within assessment teams
would imply that core developers are always available. This might be an ideal in the
spirit of eXtreme Programming [1], where the customer must be accessible at all times.
It is unrealistic in science, where PIs are busy with various tasks, developers frequently
leave projects—as they graduate, accept new positions, or are reassigned—and where
code components are often written by individuals and are so complex that only a few
people understand the core parts. Finally (and most importantly), knowledge about a
codebase tends to bias the assessment.

Developers inevitably make assumptions about reasons for code behaviour when
working on performance analysis. (Senior) Developers tend to “defend” their code,
explaining any flaws as natural consequences of their domain’s challenging nature,
their awareness of future requirements, or their in-depth knowledge of other setups
not covered by the present configuration. Simultaneously, we have frequently observed
junior developers downplaying or challenging existing code—likely to prove themselves
by pointing out “how things really should work”—and consequently interpreting every
piece of data through this lens. This list is not comprehensive. The whole team
dynamics dimension deserves further discussion (in Section ??). For the time being,
we conclude that having emotionally invested developers involved in early assessment
is counterproductive due to their inherent bias.

Work in progress/todo The link to team dynamics is broken as this part is work
in progress and not yet written.

2.2. FUNDAMENTAL HPC AND ASSESSMENT TERMS 15

Assessment crime 1 People conduct assessments as code experts. Due to this, they
deliver biased assessments since they think they already know the code’s performance
characteristics and its flaws without an objective assessment of its “real” behaviour.

For a high-quality assessment, it helps to step back and (pretend to) know nothing.
This way, we avoid entering performance analysis with bias. Adhere strictly to the
observational perspective. Even if it is your own code, try to detach yourself and
pretend you have no prior knowledge. Abstract.

How it works

⊞ Pretend you know nothing about the code. Blend out your expert knowledge and
start on a fresh sheet.

⊞ Stick to the data you measure.
⊞ Ignore what others pretend to know or have found.

How it does not work

⊟ Start with the attitude “I know what this code does and where there are weak-
nesses”.

⊟ Skip assessment steps, as you already know what’s going on.
⊟ Involve someone who’s emotionally involved in the code’s development into the

reporting. They will always defend their brain child.

2.2 Fundamental HPC and assessment terms
We try to keep the HPC jargon in this write-up to a minimum. You might argue that
this is a bad idea as we want to run scientifically sound assessments. However, we have
to acknowledge that most scientific code today is written by people without a computer
science background, and that most scientists do not have an extensive HPC training. It is
therefore not only a matter of accessibility of the performance analysis and assessment
itself to try to avoid too much jargon—if we use too much of it, we run the risk that our
outputs, i.e. the assessments themselves, cannot be read and interpreted appropriately
by our target audience. After all, most of the assessments are not done for ourselves,
but for other scientists.

At the same time, performance analysis tools are written by computer scientists,
software stacks are written by computer scientists, and computer hardware is built
by computer scientists. It is hence clear that there’s a lot of jargon buried in any
conversation around performance. We have to find a healthy middle ground to make
precise, in-depth assessments and analyses, without immersing ourselves in technical
fuzz.

Some of the most important performance analysis terms When we speak of pro-
filing, we mean recording and presenting (accumulated) metrics. The classic example
is measuring how much time we spend in a function or waiting for a message to arrive.

16 CHAPTER 2. TERMINOLOGY

Tracing is the counterpart to profiling. Here, we record performance data of individual
events. We are interested in the sequence of operations occurring within the system.
Profiling focuses on the effect of program execution while tracing focuses on the source
of behaviour (Figure 2.1). Many developers confuse these definitions, which we took
from the VI-HPS community.

Tracing can certainly be used to generate profiles, provided the recorded perfor-
mance data encompasses all quantities required for a particular metric. Conversely,
the reverse problem is ill-defined: it is generally impossible to reconstruct a trace from
a profile without specialized knowledge of the code’s internal workings. One might
immediately ask why we don’t trace all the time. The answer is equally simple: It
is too expensive. Tracing generates enormous amounts of data. Therefore, all real-
world tracing relies heavily on filtering, where you determine beforehand which types
of events to trace, which quantities to measure, and which program parts to monitor.
Consequently, we revise our introductory statement: most traces are not well-suited for
deriving program metrics, as they are, by definition, incomplete.

To create a profile, we distinguish between two techniques: We can sample program
execution. Essentially, we run the code, pause it at regular intervals, and each time
examine our metric of interest at that point. Over time, we gather a good impression
of which functions are called most frequently, how many MFlops/s we achieve, and so
forth. Some people refer to this process as monitoring. As with all statistical methods,
the data quality improves the longer an application runs. However, the risk of missing
important but brief effects remains.

Performance
Analysis

Profiling
Tracing

Sampling Instrumentation
Interrupt

Effect Event
or

<<facilitates>>
<<facilitates>>

Figure 2.1: Overview of some fundamental performance analysis concepts.

Alternatively, we can instrument an application. Instrumentation involves inserting
measurement code into our actual code which then measures quantities of interest
whenever these insertion points are reached. We can insert either at compile time, or
in a postprocessing step after the compile, or alter the code as we go. Instrumentation
yields very accurate data (provided we instrument all relevant code sections), but it can
become prohibitively expensive.

Most functions in our applications call other functions. Therefore, we must always
clearly state whether any metric we present (e.g., runtime) is inclusive, comprising all
contributions from called routines, or exclusive, representing only the function itself.

https://www.vi-hps.org/

2.2. FUNDAMENTAL HPC AND ASSESSMENT TERMS 17

When tracking metrics, measuring time and call frequency is straightforward: we
either measure system time or simply count occurrences. Other metrics are more
complicated to obtain. Fortunately, modern systems offer performance counters. They
are special registers within the chip that automatically count certain events. For example,
they can be configured to count every floating-point operation or every main memory
access, allowing us to sample them or read their values upon completion. Performance
counter registers are expensive to manufacture, so they are limited in number, and
not every vendor tracks all possible events. Consequently, some analyses might not be
possible on every system, and complex analyses might require multiple code executions,
as only a few event types can be measured per run.

As we know about the existence of hardware counters, it is clear how sampling
and tracing can obtain machine data beyond mere timing and call counts: They simply
monitor (read out) the counters. Through this, they can make statements about the
number of floating point operations completed, the number of cache misses, and so
forth. For many of these concepts, we can invert the control flow: Rather than polling a
counter or quantity, we can define interrupts, i.e. situations in which the program flow
is stopped and we call our profiler or tracer. Interrupts can be realised through hardware
or software. Their beauty is that the performance analysis sits somewhere outside of
the core program logic—most of the time, our code runs totally unaware of the analysis
in the background.

Hardware jargon We revise the bare minimum of hardware jargon here to get started,
and then refer to further resources to revise details.

Supercomputers consist of many different individual computers linked through a
high-performance interconnect (network). These computers are called nodes.

Each node is a full-grown computer and hence hosts many individual cores. All
the cores on a node share their memory (but cores from different nodes do typically not
share memory). Technically, many vendors call their cores hardware threads, as a core
is a technical building block and might host multiple threads. We use hardware thread
and core as synonyms.

On larger systems, you do not use the compute nodes directly. Instead, you log
into a login node, you compile your code there, and then you hand your code over to
a scheduler. The most popular scheduler today is Slurm. Slurm takes your request,
i.e. how many nodes you want to have and for how long, as well as all the other requests
from all other users and puzzles out a fair and efficient way to assign the resources.
For performance analysis, it makes sense to investigate if your system of choice offers
a test or benchmarking queue with a high priority. These queues usually offer only a
few nodes and restrict the maximum application runtime. In return, jobs handed over
to these queues are scheduled with high priority.

Compilation should be on the login node, as the actual compute nodes might not
provide all the required software, and many production nodes are also shielded from the
Internet, i.e. even updating you repository is a pain. Benchmarking should not be done
on the login nodes, as you share them with all other users. In contrast, you can tell the
scheduler that you want to have nodes exclusive, so no other user interferes with your
measurements. This is particularly important for all data stemming from performance

18 CHAPTER 2. TERMINOLOGY

counters, as these counters are a hardware feature that we read out, i.e. our profiler or
tracer cannot distinguish if a hardware counter’s data stems from your code or another
code if multiple users coexist on one machine.

Core performance quantities The runtime of a code is written here as 𝑡 (𝑝) where
the 𝑝 is either the number of nodes or number of cores. It depends on the context. The
speedup of a program is defined as

𝑆(𝑝) = 𝑡 (1)
𝑡 (𝑝) , (2.1)

which is typically smaller than or equal to one and tells us how much faster we made
an application by using 𝑝 compute units (cores or nodes) rather than only one.

The parallel efficiency is given by

𝐸 (𝑝) = 𝑆(𝑝)
𝑝

. (2.2)

It quantifies to which degree adding further compute resources was worth it.

2.3 Bottom-up vs. top-down assessment

Reader’s guide

It might be better to skip this section and to read it after the first high-level
assessment is completed.

Work in progress/todo This part is yet to be written and will basically point out
how the POP methodology differs from what we do here.

Chapter 3

Preparation

Reader’s guide

This section is absolutely key before you start an assessment!

In this chapter, we discuss various steps that we might want to do before we dive
into any benchmarking or assessment. It summarises activities that ensure that we
are well-prepared to run assessments, but it also comprises steps that ensure that we
understand the code sufficiently to come up with unbiased and valid statements.

3.1 Set up the benchmarks
Before we start a performance assessment, we need to agree on what type of measure-
ments to perform: There has to be one well-defined benchmark. If we are given a set of
setups and try to compare them, this will make our task complicated. We run the risk
of comparing different characteristics produced by different code parts.

• This one benchmark has to run without any user interaction. In the normal case,
the sponsor has to provide a script which builds and runs the whole benchmark
“as a black-box”.

• It has to be very easy to scale that benchmark up and down, i.e. to make the
problem solved slightly bigger or smaller.

• The benchmark has to be a simulation run which is representative of a real-world
run.

• The benchmark does not run for too long, and it does not terminate too early.
“Good” runs are often 3–5 minutes long, so we get a good coverage of perfor-
mance characteristics, but we do not wait for ages.

None of the properties are surprising: We need a well-defined toy setup, and we have
to be able to modify its size to make statements on its scalability. In this context,

19

20 CHAPTER 3. PREPARATION

it is important that we know exactly how changes of input sizes affect the compute
workload: We have to know or have to be told the computational complexity of the
underlying algorithms. If we have a pure Monte Carlo setup, then doing 100 times more
trials should last around 100 times longer. If we have a parabolic Partial Differential
Equation (PDE) solver with explicit time stepping and a regular grid, we have to know
that the problem sizes increases by a factor of 2𝑑 if we half the mesh spacing. However,
these algorithms also have to reduce the time step size, so if we measure over a fixed
time span, we actually will have four times more time steps and therefore increase the
workload by a factor of 2𝑑+2 once we half the mesh size. Finally, if we run an Adaptive
Mesh Refinement (AMR) code for a hyperbolic setup with explicit time stepping or a
Smoothed-Particle Hydrodynamics (SPH) code, we need some kind of output that tells
us exactly how many particles or mesh cells we have and what time step sizes we have
picked. In this case, time step sizes go down linearly with mesh spacing. At the end
of the day, we are interested in the throughput of the system, i.e. the time we need to
update one quantity of interest. It is this metric that we will start from in the next steps.

However, if domain experts tell us afterwards, i.e. after we have completed our
assessment—they will always do that afterwards when they are unhappy with the
outcome—that this particular run is not characteristic for larger runs, as it lacks a
feature or does not really use a particular routine heavily, our whole assessment exercise
is corrupted. And with it the whole assessment will be a big disappointment. It is their
job to pick a setup that represents what we are interested in and is nevertheless reasonably
small.

Having a “small” setup that completes in reasonable time is important since some
performance analysis tools induce significant overheads, i.e. make the code significantly
slower. If our vanilla run already needs more than an hour, we will never get an answer
on time. Furthermore, a lot of tools gather significant amounts of data per second.
Long-running simulations thus run the risk that our analysis tools fail to handle the
amount of data collected.

Checklist

1 Your benchmark compiles as a black box, i.e. you can give it to another
person together with a README file and there might be a few instructions
that they have to copy-n-paste into their terminal, but other than that there’s
no other preparatory work to be completed.

2 Your benchmark runs without any user interaction.
3 Your benchmark finishes within less than ten minutes on a single core.

No matter how we create this setup, we have to be able to run all experiments with
absolutely minimal user interaction. If we have to run through a complex pipeline for
each individual experiment, we will not be able to measure anything productively.

How it works

⊞ Ask the code owner (“assessment customer”) to provide you with a ready-to-use
benchmark.

3.2. WORKING ENVIRONMENT 21

⊞ Validate that this benchmark meets the criteria outlined in this section. Otherwise,
return it immediately.

How it does not work

⊟ Try to make a code run and design a benchmark yourself. This is the job of a
domain/code expert.

⊟ Expect insight from benchmarks that somebody without domain expertise has
chosen.

3.2 Working environment

Work in progress/todo Yet has to be written, but will cover

• Access to some queues with quick turnaround times (recommended);

• A couple of standard assessment tools. We refer to them later (forward
link). Reader recommendations: Study them as you go along.

• Exclusive access to nodes.

• Some higher user priviliges (advanced).

• A good relationship to your sysad.

3.3 Compiler setup
Before we start, it is important to double-check whether we have used the correct
compiler settings. It makes no sense to benchmark a code which is not producing
tailored code for our particularly machinery (therefore it is important to benchmark on
the right system), and it makes no sense to benchmark a code that is not using the latest
compiler features.

First of all, we work with the the most aggressive optimisation that our compiler
can offer. The minimum choice is to compile with -O3, although some other compilers
might offer further granularity. Also consider using -ffast-math which enables
aggressive floating-point optimisation.

Second, we create code that is tailored towards our particular machinery. The
correct setting for this depends once again on your compiler. With LLVM and GNU,
you can use flags starting with -mXXXX to specify machinery-specific optimisations,
i.e. you can exactly say for which processor generation, instruction set, . . . you want
for the compiler to create binary code. If your compile node is of the same type as your
test node, then simply use -xhost and the compiler will pick the highest instruction set
available. The flag is called -mhost with GNU.

22 CHAPTER 3. PREPARATION

Intel compiler

With the Intel compiler, you sometimes can pick between the generic LLVM
(community) versions of a feature and one optimised by Intel itself (with the
latter obviously performing better on bespoke Intel architecture). For exam-
ple, -fopenmp enables the general OpenMP implementation whereas -fiopenmp
gives you an in-house version of the same.

And while -xhost uses Intel-specific optimisations, -mhostwill use LLVM’s
optimisation stack, i.e. Intel has replaced some optimisation steps with bespoke
variants, which are enabled if and only if you go down the -xhost route. Be
aware that Intel’s optimisation passes typically will be disabled if you use the Intel
toolchain on other vendor’s hardware, i.e. you’ll get unoptimised code.

Finally, we might want to add debug symbols. These instruct the compiler to insert
additional information into the source code which tools can then later use to draw
inference from, e.g. which source code line a certain instruction stems from. Usually,
you cannot know from a single instruction in a machine code, where this comes from
in the original code. With the debug systems, we inject exactly this information into
the executable. Therefore, we should add -g. Some compilers support more detailed
information (e.g. using -g3). It requires studying the compiler’s feedback whether these
flags disable optimisations, in which case we might have to balance insight vs. best-case
speed.

Checklist

1 Your benchmark is compiled with debug symbols (-g).
2 Your benchmark is compiled with the highest optimisation level (-O3 plus

a hardware-specific instruction set such as picked by -xhost).

MAQAO

If you run MAQAO over your code, the tool will report back to you what opti-
misations you might have missed out throughout the compilation. The top-level
rubric Global provides you with information on the optimisation chosen, but it
also makes recommendations which options might lead to better runtime.

The nice thing about MAQAO is that the tool can handle situations where you
translate different translation units with different options. Also, the recommenda-
tion aspect goes beyond pure reporting and is helpful.

How it works

⊞ Use the most aggressive compiler optimisation that preserve the code seman-
tics (aka still return valid results) and nevertheless are tailored towards your
assessment machinery.

3.4. UNDERSTAND THE CODE’S COMPLEXITY 23

⊞ Check what optimisations the users’ build system uses by default. Often, this is
a low-hanging fruit.

How it does not work

⊟ Use a low optimisation level and machine-generic optimisations and then draw
conclusions on code behaviour on a particular machine.

3.4 Understand the code’s complexity

Reader’s guide

The complexity discussion is mainly relevant when we conduct an MPI (weak
scaling) assessment. In many cases, we might be able to skip it initially.

Work in progress/todo This part is missing but we need some discussion of the
O(𝑁2) vs. O(𝑁) behaviour that we see frequently.

3.5 I/O
Work in progress/todo This section is only partially complete. We cover the
terminal outputs but miss out on the “real” I/O.

Assessment crime 2 The code writes a lot of information to the terminal.

String operations are excessively expensive.

Checklist

1 Your benchmark does not write (a lot of) files.
2 Your benchmark does not write a lot of information to the terminal.

In this context, it is important that there’s no I/O. We don’t want to study complex
outputs; we are busy enough with handling the output of performance analysis tools.

Assessment crime 3 The code reads or write to files excessively.

More importantly, if our code writes excessive amounts of data, we almost certainly
profile the I/O efficiency rather than the runtime behaviour. Unless we want to explicitly
study I/O, we are well-advised to switch off any file outputs, database outputs, but also
excessive file reads. A log file alone can become problematic when these files become
suddenly huge or are updated frequently. In the best case, a performance assessment
benchmark writes and reads barely any data at all, i.e. it largely hard-coded and silent.

24 CHAPTER 3. PREPARATION

How it works

⊞ Disable I/O, exclude reading and writing files from any assessment as far as
possible (and as long as you don’t want to benchmark exactly this I/O).

⊞ Remove terminal dumps. If the developers want to preserve the output (e.g. for
validation or debugging), suggest to embed them into macros which can be
compiled out of the code prior to production runs.

How it does not work

⊟ Start with a high-level assessment straightaway. In particular any shared memory
measurement will be corrupted by excessive terminal dumps.

3.6 Machine details
Modern supercomputers are very complex and it is virtually impossible to memorise
all the hardware details of a testbed given the zoo of processor types, generations and
flavours. While it is possible to consult your compute centre’s webpages or to consult
your system administrator, it might be more reasonable to obtain that data directly from
the machine.

Assessment crime 4 Never grab the specification from the login node. Instead, ask for
an interactive terminal on a compute node and get the data there. Many supercomputers’
login nodes are slightly different to the compute nodes, i.e. slightly different make, more
memory, more cores, . . . So you might end up with the wrong hardware specification if
you analyse a login node.

Linux command line

On every Linux system, information about the CPU on the system is held in a
central file. You can read it out by typing cat /proc/cpuinfo into the terminal.

Likwid

If you have Likwid installed, you can invoke likwid-topology to obtain in-depth
information about your CPU.

MAQAO

In MAQAO, you find some topology information in the menu rubric Topology.

3.7. LABELLING OF CODE PARTS 25

How it works

⊞ Gather the exact spec of your testbed under realistic load. If this information is
already available (e.g. due to previous assessment exercises), it makes sense to
reuse it.

How it does not work

⊟ Throw advanced tools onto your code and expect that they report the theoretical
machine capabilities themselves.

3.7 Labelling of code parts

Reader’s guide

You might want to skip this section initially and return to it later, once you need
information about what certain code parts do.

Software typically contains quite a lot of boilerplate code: predominantly admin-
istrative routines that enable calculations but don’t deliver actual science flops. For
several follow-on exercises, it will be very useful to know which code parts deliver
science and which code parts do not directly add scientific value. This is domain
knowledge. Using it contradicts, to some degree, our ambition to run a performance
assessment in a black-box manner.

However, we do not ask an assessor to understand what a code does. We require the
assessor to know which code parts contribute towards the science case. For this reason,
it is absolutely sufficient to hand a first profile back to a domain expert and to ask them
to label those routines that do the actual calculations.

As an example: In a linear algebra code, the actual matrix-vector products, scalar
products, . . . all deliver science. The allocations for temporary block matrices, the
exchange routines for rows of the matrices, any indexing over the sparsity pattern, and
so forth do not contribute calculations. They are absolutely essential, but they do not
give us the MFlops/s.

As your analysis progresses, you might run into situations where functions suddenly
appear to be hot that you have not seen before. In this case, you can kind of safely
assume that these functions do not contribute to the science directly. If they didn’t show
up for a small-scale, few-core run, then they likely do not feed directly into the result.

VTune

Start a multithreaded run and mark the actual computational phase in the timeline
at the bottom. Switch to the Bottom up view. Zoom in and filter by selection will
narrow down the profile to the region of interest. Sort by Effective Time and change

26 CHAPTER 3. PREPARATION

to Show Data As . . . Percentage. Make notes of all the entries above roughly 1%
(rule of thumb) and/or track the top 10 routines.

How it works

⊞ Upon your very first profiling, ask a code expert which code parts (functions)
actually perform calculations, i.e. contribute towards the science.

How it does not work

⊟ Assume that all routines deliver science (even though you may assume that all
are necessary).

3.8 Existing optimisations

Reader’s guide

Playing around with (user-driven) optimisations can become tricky and might
require the assessor to communicate with developers (if you are not the same
person). For an initial assessment, it might be very reasonable to skip this section.

It is rare that we work with a code that hasn’t gone through a series of optimisation
steps already. Most developers think at one point about how to make a realisation fast.
However, optimisation steps can backfire:

First, many code developers have no systematic training in HPC and/or do not apply
rigorous performance analysis. Consequently, their realisation does not tackle hotspots.
In the worst case, the resulting optimisation steps make the code more complicated than
it actually has to be.

Second, many scientific codes are old. They contain legacy code parts. If these
code parts had been optimised, the optimisation steps might not be valid for today’s
computer architectures anymore. For example, compute time used to be expensive
and performance engineers hence used to introduce precomputed data tables in the
past. Today, memory bandwidth is likely the most precious resource. Having extensive
lookup tables can actually impose additional stress on the memory interconnect, and a
recomputation of values might be advantageous.

Finally, we have to be frank with our community: A lot of people who consider
themselves to be outstanding computational scientists actually have a very limited
understanding of computer architecture. That’s not a problem per se, as long as
people are aware of their lack of knowledge. It is problematic when we see developers
introducing or pushing for “optimisations” which actually are not supported by data or
insight, but rather individual “genius” and “expert knowledge”.

Assessment crime 5 We work with a code that the developers consider to be “highly
optimised”. Due to these optimisations, we start from a code base that is actually overly
complicated (thus hiding the “real” performance flaws) and might actual underperform
due to these optimisation steps.

3.8. EXISTING OPTIMISATIONS 27

Many scientific codes have not been co-designed as HPC codes. They have been written
first and foremost with functional requirements (“the science”) in mind. The HPC came
later. This is reflected in the code design: Optimisations are realised as add-ons
wrapping around the core science (yet sometimes, unfortunately, also penetrating it).
Therefore, we always have to keep in mind that performance has been seen as a second-
class citizen in most development projects. By the time a project has reached a certain
maturity and people suffer from performance flaws, they will ask for a performance
assessment (and then want to be told that they have already done the heavy lifting or
that their science is so challenging and completely different to everything else that it is
very hard to get good performance). They won’t ask for it prior to that.

If possible, it is helpful to disable all of these historic optimisations. We can then
start with the performance assessment on a green field and re-inject the optimisations
one by one as we go along. In an ideal world, they should make the code faster, but this
has to be validated!

How it works

⊞ Disable existing user-driven tuning options.
⊞ Independently validate that they actually make the code faster.

How it does not work

⊟ Assume historical performance optimisation steps to pay off on current hardware.
⊟ Rely on domain scientists that their optimisation has been driven by measurements

(formal performance analysis) and an in-depth insight into the machine.

28 CHAPTER 3. PREPARATION

Part II

Performance Assessment

29

Chapter 4

High-level first glance

There are various ways or strategies to obtain a first high-level overview and how to get
started if we want to understand a code’s performance better. Every team, every project,
every scientist have their own approach, and it often changes from project to project. In
this chapter, we propose a workflow running along few very simple principles:

1. We study the performance characteristics for different machine part/aspects sep-
arately.

2. We use a simple blackbox performance metric per dimension to find out first if
there are issues or not.

3. We do not use any tools (yet).

4. We are not interested in explanations of why we see any performance flaws. We
simply document what flaws we observe.

Per dimension, we later break all performance flaws found down into subrubrics, and
dig deeper and deeper into the code. Along this way, we construct working hypotheses
of why the code performs poorly. But this comes later. For the time being, we focus
in a bird’s eye view, which is an analysis which we can conduct, for example, with a
simple electronic spreadsheet, a few tools and mere timings.

Assessment crime 6 Modern preformance analysis tools (e.g. Intel Performance Ap-
plication Snapshot (APS) and Linaro MAP) and methodologies offer a high-level
overview as kind of an automatic service. This is a very valuable feature, as it pro-
vides you with a quick overview of your code’s characteristics. While we appreciate
these opportunities, we are however not sure if this is really the right starting point for
performance assessment. In our work approach, we do not use one single run and its
characterisation to get started, but we use many different runs (with different configu-
rations) to zoom into particular feature dimensions such as intra-node scaling and see
if there are issues there. Instead of one global overview, we obtain a set of metrics
which we combine into an application profile. We not rely on a one run uncovers it all
approach.

31

32 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

4.1 The assessment rubrics
We classify codes along five different metrics:

1. inter node,

2. intra node,

3. core performance,

4. GPUs, and

5. input/output.

For each of these rubrics, we initially aim for a single three-valued: All is fine (green),
there might be issues (yellow) or there are obvious flaws (red). In line with our overall
presentation approach, we use thresholds of 60% and 80% to distinguish these classes.
That is, if the GPU performance is somewhere close to 100%, all is fine. However, if it
drops below 80%, we flag it as yellow. Once the metrics we define for GPUs underrun
60%, we claim that there are definitely major issues. It is convenient to present the
overall data via a spiderweb diagram (below for a code that has I/O issues, doesn’t scale
particularly well between nodes, has no GPU yet reasonably good core performance
and node scaling):

Performance report

Inter nodeIntra node

Core

GPU

I/O

80400100 60 20

The idea to look at the five different performance dimensions separately is natural yet
does come along without shortcomings. Many performance issues within a code affect
multiple dimensions. Think about a poor GPU utilisation that materialises in bad load
balancing as well. When we dig down recursively into finer and finer metrics later on,
we have to take such cross-influence into account. Eventually, we might have to return
to our highest level of assessment again and again.

We propose to use different benchmarks for the individual rubrics. Each benchmark
will follow the recommendations from Section 3.1, but we will tailor the benchmark

4.2. CORE PERFORMANCE 33

characteristics to the effect we want to study, such that the effects of interest are most
pronounced while others are less dominant. Notably, we will disable I/O for all studies
unless we study I/O itself (cmp. Section 3.5). This implies that the final picture might
not reflect the real behaviour of a science run.

As we analyse the dimensions of performance characteristics independently, the
order does not really make a difference. In theory. In practice, we have to start
somewhere. We have personally had the experience that it is typically favourable to
start with the node-level analysis (intra-node): If the individual cores are not used
properly, MPI often does not make that much of a difference and we struggle to keep
GPUs busy. Often, the next dimension is naturally identified once we look at the
node-level performance, i.e. it tells us what to analyse next.

How it works

⊞ Ignore most things you know about tools to avoid that you are not able to see
obvious shortcomings.

⊞ When you report on your findings, focus exclusively on what you observe. Avoid
any attempt to interpret things.

How it does not work

⊟ Throw a huge, powerful tool onto your code and expect it to flag problems
immediately.

⊟ Start to measure without a clear plan of what you want to measure.

4.2 Core performance
For the core-level analysis, we examine how efficiently your code harnesses the chip’s
microarchitecture. Does your code leverage the most advanced instruction sets avail-
able? Are we maybe even compute-bound? Does it properly utilise the memory
interconnect? Are we memory-bound? Today’s chips come equipped with powerful
vector computing capabilities and sophisticated cache and streaming features designed
to move data smoothly between memory and compute registers. Our analysis evaluates
how effectively your implementation takes advantage of these capabilities.

To capture core behaviour at a high-level we simply want to measure the code’s
bandwidth and peak performance relative to the maxima of the hardware. Tools can
tempt us to reach immediately for a roofline model, or potentially even more detailed
metrics around cache misses, vectorisation ratios, etc. These topics are relevant to a
core performance analysis, but we want to start high-level or we otherwise risk focusing
on an individual metric which obfuscates or distractes our analysis. By focusing simply
on bandwidth and peak performance, our initial core performance investigation should
sit us somewhere on the ‘traffic light’ matrix below.

Assessment crime 7 We assess a setup that fits completely into one of the caches.

Assessment crime 8 We study a code that is not translated with the most aggressive
compiler optimisation for the particular architecture that we study.

34 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

Both properties are easy to check: Measure the total memory footprint of your code
and ensure that the working set exceeds the largest cache you find on your system
(cmp. remarks on caches below). Further to that, check your compiler’s manual and
ensure you use a bespoke code version for your target system—something that the
-march or -xarch as well as the highest compiler optimisations (-O3) for example
give you.

To some degree, the argument holds the other way round for the cores: Modern
chips are often not capable of cooling all of their cores if all of them run at full compute
capacity. They therefore downclock the system when they encounter lots of compute-
intense operations. As we only assess scalar peak performance in this first exercise, this
effect should not arise or be negligible. You might however want to double-check.

Likwid

With Likwid it is only a few lines

likwid-bench -t triad -W S0:2GB:1

likwid-bench -t triad -W N:2GB:128

likwid-bench -t peakflops -w S0:10000MB:1

likwid-bench -t peakflops -w N:10000MB:128

The Stream Triad [2] benchmark is a brilliant starting point to obtain realistic
throughput bounds. As we are not (yet) interested in explanations of how well
caches are used, it is important to pick a reasonably big setup that exceeds all
caches. 2GByte should be plenty. It depends on our measurement strategy if we
assess the single core bandwidth or take the whole node’s (here with 128 threads)
throughput and re-calibrate it accordingly.

The instruction set usage is something we can evaluate per core. Depending
on the character of the code, we might want to pick a more advanced instruction
set (e.g. peakflops sse or peakflops avx fma). As long as we argue about
the overall code performance, we find the plain peak performance to be absolutely
sufficient. Being within 80% of that one for the total program execution is typically
a good sign.

Once we have the thresholds, the code’s performance itself can again be used
by multiple tools. Again, likwid is our personal favourite:

likwid-perfctr -f -C 0 -g MEM ./mycode

likwid-perfctr -f -C 0 -g FLOPS_DP ./mycode

provides you with the information relevant, although the exact names of the groups
might differ from system to system.

4.2. CORE PERFORMANCE 35

Amplifier

t.b.d.

Linaro MAP

t.b.d.

Evaluation Once we know the maximum bandwidth and the obtained bandwidth,
we can compute the ratio (or normalised measured bandwidth) 𝐶bw. Along the same
lines, we determine the normalised peak 𝐶peak. The latter is a little bit weird (and
we will revise it later), as we typically normalise against the scalar peak performance.
This is surprising given that all mainstream CPUs support vectorisation and hence can
deliver several times more than that. However, we empirically found that starting with
a comparison against the baseline is a good starting point: Few codes spend all of their
runtime exclusively in very compute-heavy routines. Therefore, there will always be
code parts which do not exploit vectorisation. If those that are compute-heavy do so
and hence lift the average total peak into the regime of the scalar peak, this is already
an overall efficient code.

Performance metric (rule of thumb) 1 The delivered MFlops/s normalised against
the scalar peak is a good high-level indicator for the compute efficiency.

Performance metric (rule of thumb) 2 The used bandwidth normalised against the
memory bandwidth is a good high-level indicator for the compute efficiency.

It is not clear whether normalising against the memory bandwidth is reasonable given
that modern CPUs feature vast caches. The comparison furthermore is biased as we
measure a single core but compare it to a value taken from the whole system divided by
the core count. We however think that this normalisation nevertheless delivers a good
initial high-level metric for a code, even though it favours the real code.

Following Section 2.3, we might introduce a multiplicative or additive metric over
the two quantities to come up with a first assessment. As a matter of simplicity (and as
we use both quantities later on), we use a third variant here: an and-based correlation
of the two metrics.

𝐶bw ≥ 0.8 0.8 > 𝐶bw ≥ 0.6 0.6 > 𝐶bw
𝐶peak ≥ 0.8 perfect

0.8 > 𝐶peak ≥ 0.6 flaw
0.6 > 𝐶peak severe flaw

If 𝐶peak ≥ 0.8, the code uses the compute capabilities (very) efficiently. However, if the
bandwidth 𝐶bw < 0.6, there might still be additional space to improve the throughput

36 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

and to speed up the code. If 0.6 ≤ 𝐶peak < 0.8, the code does not use the compute units
particularly efficiently and we have to investigate further. However, if 𝐶bw ≥ 0.8, the
problem might be inherently memory-bound (to be checked), in which case there might
be limited potential to optimise further.

How it works

⊞ Run a standard benchmark to determine a realistic maximum throughput (band-
width) and peak performance for a single core.

⊞ Assess your code to find out if it makes sufficient use of the available bandwidth
and compute units.

How it does not work

⊟ Apply some performance counters as a black box without a focus on bandwidth
and peak performance.

⊟ Jump straight for a tool with gives significant data on vectorisation, cache misses,
etc.

⊟ Immediately dig into any performance flaw without evaluating the other four
rubrics first.

4.3 Intra-node (node-level) performance
On an individual node, our first goal has to be that we use all the hardware threads
efficiently. Some people prefer the term cores of threads. The term intra-node hence
means all those cores sharing one memory. Hereby it does not matter if we have a code
using MPI or a genuine multithreading language: We assess the runtime characteristics
for a code physically sharing its memory. It might be written logically in a distributed
memory fashion.

Our method of choice to argue about node-level performance is strong scaling. In
principle, we ask ourselves “what would happen if we had only one core on our node”
(we use the term core and hardware thread as synonyms from hereon). If our code
needs 80 cores on one node, then we would expect that it only needs 40 cores on two,
and 20 cores on four. This is obviously an artificial question to ask: Why would we
not use all the node? Despite the fact that we have the cores available anyway and
therefore might want to use them, finding an answer to the “what if” questions helps us
to uncover inefficiencies. How much performance do we leave on the way as we use
more and more cores? How much more computation should we be able to squeeze out
of the machine?

The underlying performance model is called Amdahl’s law, and we will return to
this law in Chapter ??. For the time being, we can abstract from any performance model
or law, and simply focus on the scaling behaviour over cores, as we have defined it in
Section 2.2: We alter the number of cores available to our code until we have reached all
the cores available, i.e. use the whole machine, and track the time to solution dependence
on core counts.

4.3. INTRA-NODE (NODE-LEVEL) PERFORMANCE 37

Benchmark preparation Throughout this assessment, we use one fixed problem
setup. The setup has to be chosen such that we can compute it on a single core if
necessary. However, it also has to be reasonably big such that it makes sense to exploit
all threads of a node.

Assessment crime 9 We start an intra-node assessment with a code which only uses a
tiny fraction of the main memory.

We may assume that a node and its memory are somehow balanced. If we don’t use a
reasonable amount of this memory for a test run, then there is simply not enough work
to do to utilise all cores. We can barely blame the code. As a rule of thumb, we should
have a memory footprint which is at least 20% of the total RAM available on the whole
node.

Data collection For the data collection, we first run the simulation without any
parallelisation, which is, trivially, a single-core run. After that, we switch to the parallel
code version and vary the core count 𝑝intra.

Assessment crime 10 Use a code base that is relatively inefficient on a single core and
use this as baseline for any scaling claims.

It is important that we question the code developers on different code variants prior to
the assessment: If they offer, for example, quite sophisticated task-based parallelism for
shared memory, we still should calibrate all runtime against a serial code without these
tasks. That is a fair benchmark that avoids any tasking overhead where it is not needed.

OpenMP

In OpenMP, we can simply set OMP NUM THREADS to achieve this. After that, we
run our code and should automatically get the correct core count. Depending on
your system’s configuration, you might want to set some additional command line
variables such as

export OMP_PROC_BIND=close

or similar to ensure that the operating system does not swap your threads around,
i.e. decide at one point to migrate a thread to a different core. This never gives good
performance. Be careful as well with setting the OpenMP threads manually while
using another core specification technique such as Slurm’s configs or tasksets
(both below): If you do so, you might force all the OpenMP threads onto a few
cores only, i.e. accidentally over- or undersubscribing the testbed.

Slurm

Using Slurm, we do not have set environment variables ourselves, instead

38 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

Slurmmanages resources and so we can request a quantity of cores with the -c
flag, e.g.,

#!/bin/bash

#SBATCH -c 2

./my_exec

or equivalently use #SBATCH --cpus-per-task 2.

Linux command line

The one thing that works always is using

taskset -c 0-3 ./myexec

to employ, e.g., the first four cores only. However, you should be careful when
you use this in combination with Slurm or OpenMP which also make choices on
cores. You might end up with competing or contradictory settings and end up with
a suboptimal system usage.

If we have a code base which employs MPI only, we set the number of ranks per node
through the mpirun call or the scheduler (Slurm) environment.

Assessment crime 11 If you have the opportunity to mask out the initialisation time
and to focus only on the “real” runtime of your benchmark code, use it at this point.
Notably when you work with very short execution times, the initialisation overhead
might otherwise dominate your measurements.

From the set of measurements (Figure 4.1), we first compare the two timings for a
single core (the red dot vs. the green dot above it). This gives us a 𝑡serial and a 𝑡intra (1)
given in red and green, respectively. As we use different executables—once compiled
with support for shared memory and once without—these times will differ and we’d
assume 𝑡serial ≤ 𝑡intra (1). If the code is not available without any parallelisation, assume
𝑡serial = 𝑡intra (1). After that, we collect the remaining 𝑡 (𝑝intra).

It is not unheard of that codes yield data where the runtime starts to raise again once
we exceed a certain core count (yellow dots). This means that the speedup deteriorates
completely. In this case, it is perfectly reasonable to constrain the maximum 𝑝threads
such that the we do not run into this “problematic” range of threads and to neglect the
measurements further on. The performance flaws will already be documented for the
smaller core counts where we at least continued to see some speedup.

For hybrid MPI+X codes, we have a certain freedom: We can use an arbitrary
number of MPI ranks—indeed our analysis also works for pure MPI codes as long as
we stick to one node—and use threads on top such that we exploit all 𝑝threads hardware
threads of interest. This means, we have a certain degree of freedom. Picking one rank

4.3. INTRA-NODE (NODE-LEVEL) PERFORMANCE 39

Figure 4.1: A scatter plot tracking the (strong) scaling data feeding into our intra-node
analysis. The red node is the code’s runtime without any parallelisation enabled, while
the green and yellow measurements stem from the parallelised code over various cores.

and four threads is, logically, equivalent to picking two ranks and two threads each. It
is part of the assessment to play around with these degrees of freedom. Once again:
If we spot sudden runtime jumps (yellow dots in example sketch) and if these jumps
coincide with a NUMA domain or socket, then this might be a strong indicator that we
should use MPI instead of threading. However, one might argue that this is already part
of an in-depth analysis rather than a high-level overview.

Evaluation With the speedups at hand, we can compute the code’s parallel efficiency.
We use a slightly modified version as compared to Equations (2.1) and (2.2), where we
calibrate the runtimes against the serial code runtime:

Performance metric (rule of thumb) 3 The modified parallel core efficiency

𝐸intra (𝑝intra) =
𝑡serial

𝑡 (𝑝intra) · 𝑝intra

normalised against the serial runtime without any parallelism support is a good indi-
cator for inter-node performance flaws.

We use this quantity to determine if we consider the code to have an intra-node flaw.
Obviously, we will obtain a series of these quantities. The assessor might decide to
compute an average, to argue over different regimes of values, or to study only the value
for the maximum core count.

40 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

Efficiency Description
𝐸intra (𝑝intra) ≥ 0.8 Shared memory scaling is good.

0.6 ≤ 𝐸intra (𝑝intra) < 0.8 Shared memory scaling is not particularly good, and
we notably might run into problems with the next gen-
eration of chips where the core count will increase.

𝐸intra (𝑝intra) < 0.6 Shared memory scaling is poor.

How it works

⊞ Compile your code without multithreading/parallel support and compare its per-
formance to a code without any parallelisation to determine the overhead of the
parallel implementation.

⊞ Run a strong scaling study and calibrate the constants of an extended Amdahl
model against these measurements.

How it does not work

⊟ Skip intra-node scalability studies, as the code is “only” MPI.
⊟ Perform a sole strong scalability study without taking the implementation penalty

into account.
⊟ Jump straight into a further “in-depth” analysis without evaluating the other

high-level metrics.

4.4 Inter-node performance
Inter-node behaviour means that code runs over multiple physically separated nodes.
In our case, this implies that it uses MPI. We work with a programming model which
treats memory physically and logically as separate. There are software solutions that
pretend to the code to have one large shared memory. Such virtually shared memory
solutions would fall into this assessment category as well, so long as we use more than
one physical processor.

Our method of choice to argue about inter-node performance is weak scaling. We
apply basically the vanilla version of Gustafson’s law [3], where we assume that the
runtime of the code is determined by

𝑡 (1) = 𝑡 (𝑝ranks) (𝑓inter𝑝ranks + (1 − 𝑓inter)) . (4.1)

In this model, we reconstruct the time 𝑡 (1) for a code that we would need to run an
experiment on one rank only. Implicitly, we assume that 𝑓inter stays constant for all
setups. This deserves a brief excursus: If we took one setup and distributed it among
multiple nodes, we typically would introduce more and more overhead as we use more
ranks. That is, we increase 𝑓inter. To keep it constant, we have to increase the problem
size appropriately, such that the 𝑓inter remains roughly the same for all setups, i.e. no
matter how many ranks we use.

Given said “we alter the problem size to keep 𝑓 roughly constant” discussion, it
is formally better to write 𝑡 (1, 𝑝ranks) rather than only 𝑡 (1)—even though almost no

4.5. GPU PERFORMANCE 41

write-up does so. When we compare our model to Equation (??), we observe that
Equation (4.1) lacks a penalty parameter. Indeed, we introduce another parameter of
interest here: We assume that each data point in (4.1) contains two types

𝑡 (𝑝ranks) = 𝑡useful (𝑝ranks) + 𝑡overhead (𝑝ranks)
= (𝐶useful + (1 − 𝐶useful)) 𝑡 (𝑝ranks) (4.2)

of runtime.

Benchmark preparation For weak scaling, we increase the problem size as we add
additional nodes. Therefore, it is important that we understand the cost function 𝑇 (0) .

Assessment crime 12 We scale up the problem such that the individual work per nodes
becomes very small.

As a rule of thumb, we can simply track the memory footprint per rank and ensure that
it stays within a certain regime such as 60% of the available memory per node.

Data collection The data collection is very similar to the strong scaling studies in
Section 4.3: We track the cost of the computation (time-to-solution) over multiple nodes
for each problem size. For the bigger setups, we won’t be able to evaluate the problem
on only one node, but that’s, in general, not necessary. If we have a problem of size 𝑁

on one node, a problem of size 2𝑁 does only have to be evaluated on two nodes. There
is no need to run this one on two nodes as well.

t.b.d.
This is where the strong scaling curves (Section 4.3) plateau or even start to rise

again over the core count.

4.5 GPU performance
t.b.d.

4.6 I/O performance
t.b.d.

4.7 Localisation
So far, we have assessed our code as one big black box.

• We did not ask which part of the code causes a problem.

• We did not ask when it arises throughout the execution.

42 CHAPTER 4. HIGH-LEVEL FIRST GLANCE

• We did not ask where, i.e. on which rank (if we run over multiple nodes) a problem
arises.

• We distinguished, to some degree, what we want to study in our code, i.e. which
quantity of interest.

Before we continue to assess the code and dive deeper into details, it makes sense to
gather the information from the first three bullet points above or at least to discuss
various approaches for gathering said information. Hereby, we must consider the type
of flaw we are investigating: Single-core flaws imply that the “where” question does
not play a significant role. Inter-node flaws might suggest that the “where” question is
the primary concern to address.

Finally, the most frequent quantity of interest (metric) will be time spent in routines.
In this case, the routines consuming most time are also called hotspots of a code.
However, there are many other metrics that affect runtime, and we might want to study
them separately—even though all of them eventually affect the time-to-solution1. Not
all tools can provide answers for all metrics. We therefore must carefully select our
repertoire of tools.

How it works

⊞ Once you have a first high-level overview, run a profiler to confirm that effect is
either localised or uniformly found over all compute units.

⊞ If the flaw is found on few units only or only for a certain compute time or within
one function which is not responsible for the majority of the runtime, study the
flaw for this program phase, compute unit, function separatedly from all others.

⊞ Upon your very first profiling, ask a code expert which code parts (functions)
actually perform calculations (cmp. Section 3.7).

How it does not work

⊟ Jump straight into some traces without spending time to think what metrics and
program parts are relevant to answer your hypotheses regarding performance
flaws.

⊟ Draw conclusions from global observations on all code parts and compute re-
sources (cores or ranks).

1Some codes are interested in other metrics such as energy, but they are still rare.

Chapter 5

Summary and outlook

This document is still early into its preparation. However, it demonstrates some key
points around our main focus of building a performance analysis methodology that
seeks to avoid jumping straight for a performance tool. Instead we want a methodology
that starts high-level and only reaches for tool, when appropriate. Rather than being
lead by the tool, we want to be lead towards a tool by the methodology.

5.1 Recap
Though this iteration of the document is just a brief introduction, it covers some of the
necessities for establishing a rigorous performance assessment service.

We believe that beginning with an overview of terminology in Chapter 2, including
the fundamentals of HPC, is a vital starting point. Many users and developers come
to HPC without a technical background in computing, and it is important now more
than ever to set out an agreed set of terms for this performance analysis methodology.
Beyond acting as a glossary of HPC and performance terms, Chapter 2 also establishes
some of the key concepts of how we are to conduct a performance assessment such
as treating a code as a blackbox and noting measurements of runtime performance
objectively, without jumping quickly to deductions.

Preparation for a performance assessment is key to reproducibility. Chapter 3
lays out some details of our ‘experimental reproducibility’, i.e. before carrying out
a performance assessment, we need to establish the fundamentals of setting up our
benchmark. Once the benchmark example has been agreed upon, setting up the compiler
and other variables such as I/O, etc. is a crucial part of how to make sure that varying,
e.g. the number of cores gives reliable data. It should be noted that within this
preparation, we may also see performance gains in tuning compiler options. This
preparation stage is a key point of the performance assessment in which engagement
with the service user is crucial. In order to get a useful benchmark example which is
indicative of a real simulation run, the domain specialist needs to set this up.

This current document finishes with a high-level approach to an assessment in
Chapter 4. One reason for this is we find often without this initial high-level approach,

43

44 CHAPTER 5. SUMMARY AND OUTLOOK

HPC users will immediately jump to a tool which can give a miriad of data and metrics.
This sometimes sends an HPC user down a wrong path as they may not be following a
structure methodology to rigorously analyse performance; or, we have even found that
some people are put off by the overwhelming data and the user gives up on the analysis
as they get a sensation of: “where do I begin?”.

The high-level approach can be a stepping stone into a more detailed analysis as it
simply breaks down performance into five topics: core, intra-node, inter-node, GPU,
I/O. For some tool developers, the tools direct the user towards an almost ‘Matryoshka
doll’ model of performance, i.e. core performance sits within intra-node performance
which sits within inter-node performance. We believe this to be an over simplification,
and in reality, these performance topics can never be truly de-coupled from one another.
The high-level approach presented here is not seeking to focus the analyst down one
particular avenue or another, it simply gives an overview of the performance landscape
for a particular code.

5.2 Outlook
Having established that this document is not the finished work, it is worthwhile detailing
what is to come in future versions. In particular: 1. what is left out of the current
methodology; 2. what is to be discussed about the implementation of this methodology
into a performance assessment service.

Firstly, performance topic decision trees. We believe there is value in beginning
with the high-level performance assessment, and we indeed recommend beginning with
this for any performance assessment. However, this is by definition not a complete
analysis in and of itself. Through a series of performance analysis workshops we have
begun to design a series of decision trees.

Each performance topic will have a decision tree, i.e. having conducted the high-
level assessment the analyst will have to make a decision as to which topic to begin
with and the decision trees will direct the analyst through a series of binary outcomes
to isolate individual performance issues. For example, for intra-node performance we
can begin by asking if the code is dominantly parallelised, if not then our performance
engineering should be directed towards increasing the scope of parallelisation (though
again we note that said engineering falls outside the scope of this work). If there is
significant parallelism, then we can ask if there is good load-balancing. If there is good
load balance then we can explore synchronisation, if not we turn to checking if there
are enough tasks, etc. as we work down the tree. We plan to have decision trees for
each performance topic with good progress made on core, intra-node and inter-node
with our focus next turning to GPU and I/O.

Secondly, once we have introduced the decision trees we can describe our entire
performance assessment methodology including case-studies. As we work through the
creation of this manuscript, we are employing this methodology on existing codes whilst
also engaging with other users/developers through performance analysis workshops.
We include points on building the performance analysis results into a finished report
alongside these case studies.

Lastly, we will give details as to the implementation of the assessment service from

5.2. OUTLOOK 45

an organisational stand point. Beyond setting out the assessment methodology, there
are also a number of points around how do you actually build a functional assessment
service from the interactions with scientists and developers through to the interface of
the service.

One component of the service interface is planned to be a reproducibility analysis,
i.e. if an HPC developer is deciding to engage with a performance assessment then
it is worth auditing the reproducibility of their software. For example, is the code
documented, using version control, implementing CI/CD pipeline, etc. A performance
assessment can mean a developer is already giving their time to stop and reflect on their
code and so introducing some time to also implement some good software practices
can have two effects: 1. it helps the sustainability of their software going forward;
2. it helps the job of the analyst if the building and running of the software is well
documented and hosted on a well maintained repository.

In summary, this document lays out just beginning of delivering a performance
assessment, and the future iteration of this document will expand upon this methodology
whilst also discussing the infrastructure of how to implement this methodology as a
functional performance assessment service.

46 CHAPTER 5. SUMMARY AND OUTLOOK

Part III

Appendix

47

Appendix A

Acknowledgements

A.1 Funding councils and supporting initiatives
This work was supported by the Science and Technology Facilities Council [grant
number UKRI/ST/B000293/1]. This work also was supported by the Engineering
and Physical Sciences Research Council [grant number UKRI1801]. The underlying
projects HAI-End and SHAREing (Skills Hub for Accelerated Research Environments
Inspiring the Next Generation) is part of the cross-UKRI Digital Research Infrastructure
initiative.

A.2 Partners
We thank the companies AMD, Intel and Linaro for their continuing support of these
activities by sending delegates to our workshops and contributing to our document.

Durham University is a proud partner of VI-HPS (https://www.vi-hps.org/)
and appreciates the input of our colleagues and friends of the research consortium.
Without their input, none of this would have been possible.

49

https://www.vi-hps.org/

50 APPENDIX A. ACKNOWLEDGEMENTS

Bibliography

[1] Kent. Beck. Extreme programming explained : embrace change. Addison-Wesley,
Reading, Mass, 1999.

[2] John D McCalpin et al. Memory bandwidth and machine balance in current high
performance computers. IEEE computer society technical committee on computer
architecture (TCCA) newsletter, 2(19-25), 1995.

[3] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
May 1988.

51

Index

Amplifier, 35

Core, 17

Hardware counters, 16
Hardware thread, 17

Intel compiler, 22

Likwid, 24, 34
Linaro MAP, 35
Linux command line, 24, 38

MAQAO, 22, 24
Memory bandwidth, 35
MFlops/s, 35

Node, 17

OpenMP, 37

Parallel efficiency, 18
Peak performance, 35
Profiling, 15

Exclusive, 16
Inclusive, 16
Instrumentation, 16
Sampling, 16

Requirements
Non-functional, 13

Slurm, 37
Speedup, 18, 39

Tracing, 15
Filtering, 16

VTune, 25

52

	I Introduction
	How to read
	Terminology
	What we do
	Fundamental HPC and assessment terms
	Bottom-up vs. top-down assessment

	Preparation
	Set up the benchmarks
	Working environment
	Compiler setup
	Understand the code's complexity
	I/O
	Machine details
	Labelling of code parts
	Existing optimisations

	II Performance Assessment
	High-level first glance
	The assessment rubrics
	Core performance
	Intra-node (node-level) performance
	Inter-node performance
	GPU performance
	I/O performance
	Localisation

	Summary and outlook
	Recap
	Outlook

	III Appendix
	Acknowledgements
	Funding councils and supporting initiatives
	Partners

